Robot aprende a manipular objetos tras estudiarlos en realidad virtual

Durante este año los robots han hecho avances importantes, demostrando nuevos métodos para manipular objetos, robusteciendo con ello las cualidades de estos autómatas en su trayectoria a conquistar la raza humana.

El más fresco ejemplo en esta carrera por la superioridad robótica proviene de la Universidad de California en Berkeley, quienes han desarrollado la plataforma DexNet 2.0, un simulador de existencia supuesto con el que los robots pueden analizar objetos y deducir como maniobrarlos antiguamente de intentarlo positivamente:

Ver en YouTube

Jeff Mahler, uno de los encargados del tesina, comparte en entrevista con Digital Trends, cómo desarrolladron el núcleo de DexNet 2.0:

Construimos un maniquí probabilístico de la física aplicada para la sujeción de objetos, en ocasión de suponer que el androide conoce ya “el estado del mundo”. Específicamente modelamos la probabilidad de alcanzar un agarre exitoso, a partir de una observación del entorno.

Los datos de 1.500 modelos 3D virtuales sirvieron como pulvínulo para para ocasionar 6,7 millones de nubes de puntos utilizables, que ayudaron a predecir la probabilidad de éxito de distintos escenarios de agarre a partir de una combinación de uso sobre los mencionados puntos.

Pero esto sería sólo el principio para DexNet, ya que sus creadores incluso quieren que los brazos robóticos de esta primera coexistentes más delante sean capaces de reorientar objetos para preparar procesos de ensamblaje y propalar el código correspondiente para permitir que los usuarios generen sus propios conjuntos de datos de entrenamiento.

Es inesperado cómo los robots aprovechan entornos “virtuales” para mejorar sus funciones, y dista un poco de los usos que le suelen dar los humanos a estas plataformas.




Source link

deja tu opinion

Seguinos

Tecnoblog en las redes sociales